

深圳唯创知音电子有限公司

Shenzhen Waytronic Electronic Co., Ltd

WT9110B 芯片资料

版本号: V1.04

Note:

WAYTRONIC ELECTRONIC CO.,LTD. reserves the right to change this document without prior notice. Information provided by WAYTRONIC is believed to be accurate and reliable. However, WAYTRONIC makes no warranty for any errors which may appear in this document. Contact WAYTRONIC to obtain the latest version of device specifications before placing your orders. No responsibility is assumed by WAYTRONIC for any infringement of patent or other rights of third parties which may result from its use. In addition, WAYTRONIC products are not authorized for use as critical components in life support devices/systems or aviation devices/systems, where a malfunction or failure of the product may reasonably be expected to result in significant injury to the user, without the express written approval of WAYTRONIC.

目录

一、	历史版本	2
	产品简介	
	芯片管脚定义及说明	
	典型原理图	
	极限参数	
	电气参数	
七、	Class_D 功率	7
八、	性能特性曲线	8
九、	应用说明	9
	测试方法	
+-,	、测电路设计注意事项	11
	、 EMC 认证建议	
	. 丝印说明	
	、 封装尺寸	
十五、	包装信息	

一、历史版本

版本	日期	说明
V1.00	2022-02-15	初始版本
V1.01	2022-12-28	完善原理图及修订说明书布局
V1.02	2023-05-05	优化布局
V1.03	2023-08-02	删除应用原理图
V1.04	2023-08-04	去除不必要的说明

二、产品简介

WT9110B 是一款在 14.5V 供电、1KHz 音频下带 4Ω 喇叭负载最高可输出至 28W 的 D 类音频功率 放大器。

WT9110B工作电压 6-14.5V,同时采用差分输入结构,对噪声的干扰有很好的抑制作用。

WT9110B的 D 类模式控制和关断控制集成在一个脚位上,通过一个管脚控制芯片的开启、关闭自由切换,可以极大程度的节省 IO 口,并且在 D 类放大器模式下可以提供高于 90%的效率,新型的无滤波器结构可以省去传统 D 类放大器的输出低通滤波器,

WT9110B 采用 ESOP-8 封装,且有过温、短路保护功能。

WT9110B 反馈电阻内置,通过配置外围参数可以调整放大器的电压增益及最佳音质效果,方便应用。

实物图片

特性参数

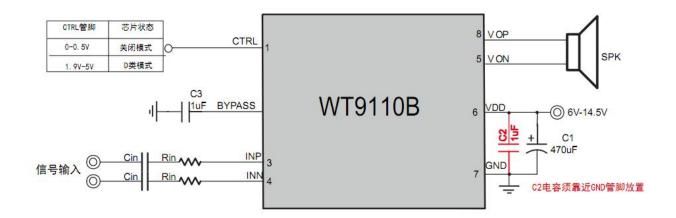
- ①输入电压范围 6V-14.5V
- ②无滤波的 D 类放大器、低静态电流和低 EMI
- ③FM 模式无干扰,超低底噪、超低失真;
- ④10% THD+N, 1KHz, VDD=12V, 4Ω+33UH 负载 下 提供高达 20W 的输出功率;
- ⑤10% THD+N, 1KHz, VDD=14.5V, 4Ω+33UH 负载下 提供高达 28W 的输出功率;
- ⑥上电、掉电、播放音乐初及播放音乐结尾产 生的"POP"声音抵制;
 - ⑦过温保护、短路保护;

应用领域

- ①蓝牙音箱、智能音箱
- ②导航仪、便携游戏机、扩音器
- ③拉杆音箱、DVD、智能家居
- ④各类 6-14.5V 供电音频产品

WT9110B 芯片订购信息

芯片型号	封装类型	包装类型	最小包装数量 (PCS)	备注
WT9110B	ESOP8	管装	100/管	丝印说明:根据批次 会有变化,详见后序 章节丝印说明。


三、芯片管脚定义及说明

WT9110B-8S

脚位号	符号	描述
1	CTRL	使能控制。高电平开启工作,低电平关闭功放
2	BYP(BYPASS)	内部共模参考电压,接旁路电容 1uF 到地
3	INP	音源正相输入端
4	INN	音源反相输入端
5	VON	模拟输出端负
6	VDD	电源输入正
7	GND	电源输入负
8	VOP	模拟输出端正
0	GND	芯片底部散热地,外部必须与第 7 脚 GND 连通,且在功率大时,设计一定宽度的铺铜区域用于散热。

四、典型原理图

五、极限参数

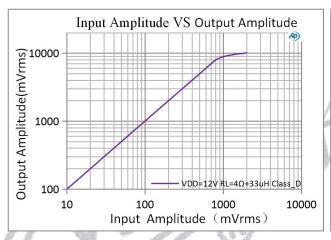
参数	最小值	最大值	单位	说明
电源电压	6	14. 5	V	
储存温度	-40	145	${\mathbb C}$	
输入电压	-0.3	VDD	V	
耐 ESD 电压 1	±2000		V	HBM,人体静电
耐 ESD 电压 2	±300		V	CDM,机器模型静电
结温	160		$^{\circ}$	
推荐工作温度	-40	85	$^{\circ}$	
推荐工作电压	6. 5	14	V	
		热阻		
JC (ESOP)		35	°C/W	
JA (ESOP)		140	°C/W	
焊接温度		220	${\mathbb C}$	10 秒内

六、电气参数

AV=25dB, TA=25℃, 无特殊说明的项目均是在 VDD=9V, 4Ω+33uH 条件下测试:

描述	符号	测试	条件	最小值	典型值	最大值	单位
静态电流	${ m I}_{ ext{ iny DD}}$	VDD =9V		_	10	17	mA
静态底噪	Vn	VDD=9V , AV=2	25DB, Awting		120		uV
信噪比	Nsr	VDD=9V , AV=2	25DB, Awting		93		DB
频率	$F_{\scriptscriptstyle SW}$	VDD=	9V		520		kHz
输出失调电压	Vos	V _{IN} =	OV		10		mV
启动时间	$T_{ m start}$	Vdd=9V, By	ypass=1uF		240	E (6)	MS
增益	Av	R _{IN} =2	27k	4	≈25	E V	DB
电源关闭电压	$\mathrm{VDD}_{\mathrm{sd}}$	CTRL>2. OV			<4.5	MI	V
电源开启电压	$\mathrm{VDD}_{\mathrm{open}}$	CTRL>2. 0V		V	>5. 5		V
关闭电压	$\mathrm{CTRL}_{\mathrm{sd}}$	M M		<i>~</i> J	<0.5		V
开启电压	$CTRL_{D}$			1.9	2. 5	5	V
过温保护	$0_{\scriptscriptstyle ext{TP}}$	Ø.			180		$^{\circ}$
+4 -4 -17 \ \Z \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		$I_{DS}=0.5A$	P_MOSFET		15. 55		
静态导通电阻	$R_{ m DSON}$	$V_{GS}=9V$	N_MOSFET		125		mΩ
内置输入电阻	R_s				5K		КΩ
内置反馈电阻	R_{f}				580K		КΩ
效率	η _c				90		%

七、Class_D 功率

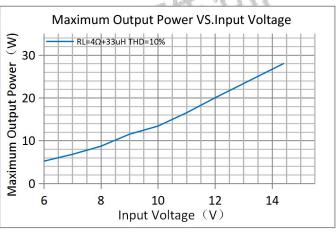

AV=25dB, TA=25℃,无特殊说明的项目均是在 VDD=9V,4 Ω 条件下测试:

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- - -	W W
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	_	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- Prop (- W
THD+N=1%, f=1kHz, $V_{DD}=12$ 8.51 $V_{DD}=9$ 4.76 $V_{DD}=7.4$ 3.2	frey (W
$R_L=8 \Omega$; $V_{DD}=9$ 4.76 $V_{DD}=7.4$ 3.2	Pol	W
$V_{DD} = 7.4$ 3.2	Jan V] "
	J	The state of the s
V =14 5V - 29	Late Bearing !	/
V _{DD} 14. 5V	C-10	13/
THD+N=10%, f=1kHz, V _{DD} =12V - 20	40	16
$R_L=4\Omega$; $V_{DD}=9V$ - 11.5) F "	W
V _{DD} =7.4V - 7.7	-	
输出功率 P _o 21. 1		
THD+N=1%, $f=1kHz$, $V_{DD}=12V$ 15. 46		- W
$R_L=4 \Omega$; $V_{DD}=9V$ 8.637		W
V _{DD} =7. 4V 5. 78		
V _{DD} =12V - 23.9	_	
THD+N=10%, f=1kHz, $V_{DD}=9V$ - 14	_	
V _{DD} =7.4V - 9.3	-	
V _{DD} =12V 18. 95		W
THD+N=1%, $f=1kHz$, $V_{DD}=9V$ 10.72		
$V_{DD} = 7.4V$ 7.18		
THD+N=10%, f=1kHz, V _{DD} =8.4V 16		
$R_L=2 \Omega$; $V_{DD}=7.4 V$ 12.7		
总谐波失真加噪 Γ THD+N Γ	_	%

八、性能特性曲线

特性曲线测试条件(T₄=25℃)

描述	测试条件	编号
Input Amplitude VS. Output Amplitude	VDD=12V,RL=4 Ω +33UH ,Class_D	图 1
	VDD=14.5V,RL=4 Ω +33UH,A $_{V}$ =20DB,Class $_{L}$ D	
Output Davier VC TUD N. Class D	VDD=12V,RL=4 Ω +33UH,A $_{V}$ =20DB,Class_D	图 3
Output Power VS. THD+N _Class_D	VDD=9V ,RL=4Ω+33UH,A _V =20DB,Class_D	图 2
	VDD=7.4V ,RL=4 Ω +33UH,A $_V$ =20DB,Class_D	
Frequency VS.THD+N	RL=4Ω+33UH,THD=10%, Class_D	图 3
Input Voltage VS. Maximum Output Power	RL=4Ω+33UH,THD=10%, Class_D	图 4
Input Voltage VS.Power Crrent	VDD=6.0V-12V,Class_D	图 5
Frequency Response	VDD=12V,RL=4Ω,Class_D	图 6



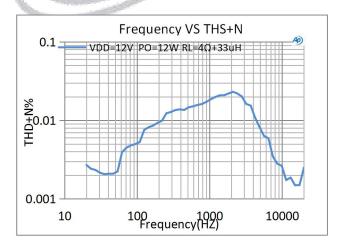

图 1: Input Amplitude VS. Output Amplitude

图 2: THD+N VS .Output Power Class_D

VDD=14.5V RL=4Ω+33uH Class_D VDD=12V RL=4Ω+33uH Class_D

VDD=9V_RL=4Ω+33uH Class_D VDD=7.4V_RL=4Ω+33uH Class_D

THD+N VS Output Power

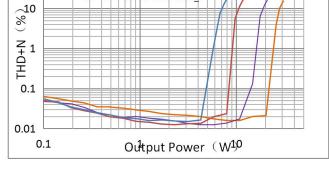
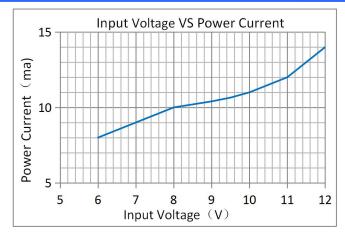



图 3: Frequency VS.THD+N

图 4: Input Voltage VS. Maximum Output Power

100

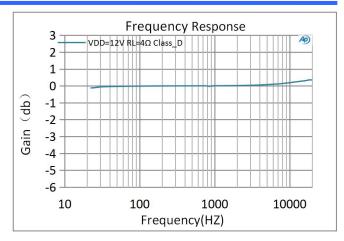


图 5: Power Crrent VS. Suppy Voltage

图 6: Frequency Response

九、应用说明

1. CTRL 管脚控制

CTRL 管脚是芯片使能脚位,控制芯片关闭、D 类模式的切换功能,CTRL 输入对应的电压,芯片工作在对应的工作模式。CTRL 管脚不能悬空。

	7 200 27
CTRL 管脚	芯片状态
<0.5V	关闭状态
1. 9V-5V	D类模式

2. 功放增益控制

D类模式时输出为(PWM 信号)数字信号, D类模式时输出其增益可通过 R™调节。

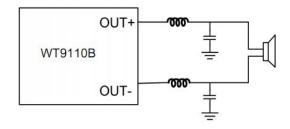
$$A_V = \frac{580 \, K\Omega}{(R_{IN} + 5 \, K\Omega)}$$

Av为增益,通常用 DB表示,上述计算结果单位为倍数、20Log 倍数=DB。

 $R_{\mathbb{N}}$ 电阻的单位为 $K\Omega$,580 $K\Omega$ 为内部反馈电阻($R_{\mathbb{F}}$),5 $K\Omega$ 为内置串联电阻($R_{\mathbb{S}}$), $R_{\mathbb{N}}$ 由用户根据实际供电电压、输入幅度、和失真度定义。 如 $R_{\mathbb{N}}$ =43K 时,=12.08 倍、AV=21.64DB

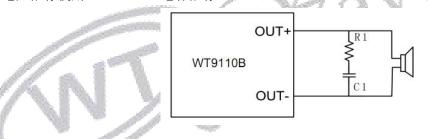
输入电容(C_{IN})和输入电阻(R_{IN})组成高通滤波器,其截止频率为:

$$f_C = \frac{1}{2\pi \times (R_{IN} + 5K) \times C_{IN}}$$

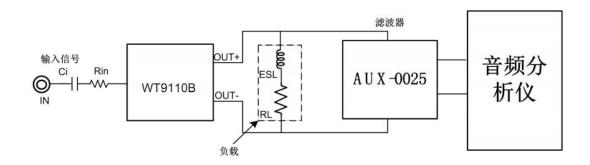

Cin 电容选取较小值时,可以滤除从输入端耦合入的低频噪声,同时有助于减小开启时的 POP 声

3. Bypass 电容

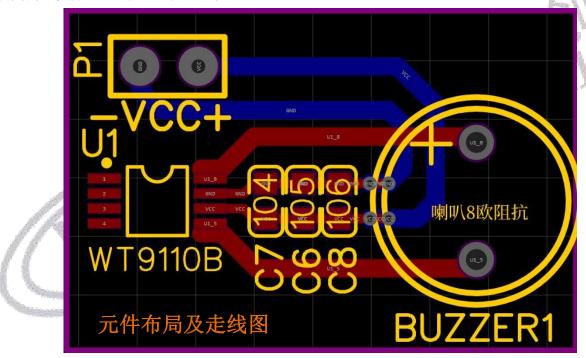
Bypass 电容是非常重要的,该电容的大小决定了功放芯片的开启时间,同时 Bypass 电容的大小会影响芯片的电源抑制比、噪声、以及 POP 声等重要性能。建议将该电容设置为 1uf,因该 Byp 的充电速度比输入信号端的充电速度越慢,POP 声越小。


4. EMI 处理

对于输出走线较长或靠近敏感器件时,建议加上 LC 滤波电路,减小对周围其他电路的干扰,电感和电容,能有效减小 EMI。电感参数: 33uH 2.8A 电容参数范围: 102 至 105 (最大 105);

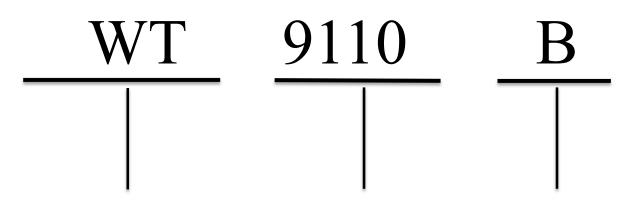

5. RC 缓冲电路

如喇叭负载阻抗值较小时,建议在输出端并一个电阻和一个电容来吸收电压尖峰,防止芯片工作异常。电阻推荐使用: 2Ω - 5Ω , 电容推荐: 500PF-10NF。


十、测试方法

在测试 D 类模式时必须加滤波器测试。AUX-0025 为滤波器。为了测试数据精准并符合实际应用,在RL 负载端串联一个电感,模拟喇叭中的寄生电感。

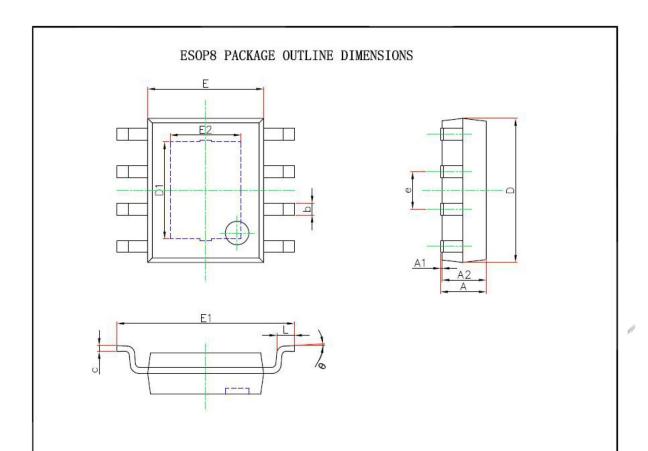
十一、测电路设计注意事项


- 1. 音频输入线路及元件远离干拢源;如:高频信号、天线、PWM 脉冲信号等;
- 2. MCU 的 IO 口控制功放使能脚走线应该远离功放输出与音频信号线路及元件,前者会致误触发风险,后者会给音频信号带去一些干扰。
- 3. 音频输入脚尽可能接一个 103 到地;
- 4. 芯片周边电容必须靠近芯片管脚放置;
- 5. 电源走线到功放电源脚时,必须先经过电容再到功放电源脚;电容与功放电源脚距离最近边在 1.5mm
- 6. 左右; 走线网络中如有过孔必须使用多孔连接, 并加大过孔内径, 不可使用单个过孔直接连接; (详见下边的元件布局及走线图)
- 7. 音频电路信号途径元件及走线采用 GND 包围走线,减少干扰;
- 8. 功放输出连接到喇叭的管脚走线管脚尽可能的短,并且走线宽度在 1mm 以上。
- 9. 芯片底部散热地需要有足够大的散热面积,也就是地铺铜的面积尽可能大;当 PCB 为双面板时,芯片底部焊盘多打一些过孔,过孔间的中心间距 1mm。

十二、EMC 认证建议

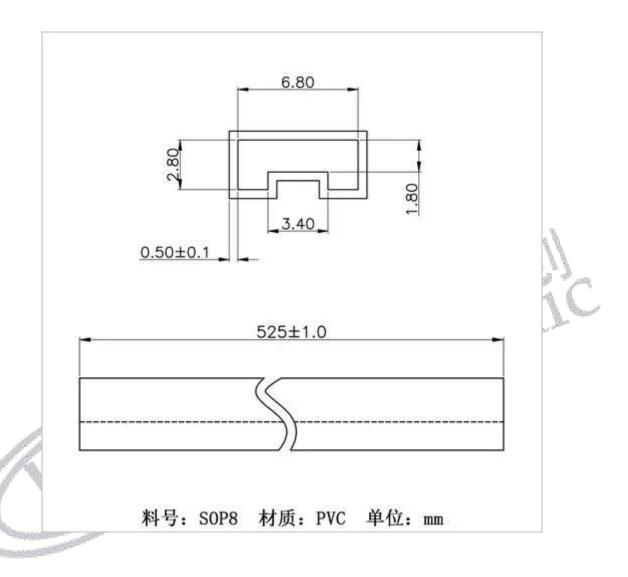
- 1. 功放供电电路中加入 LC 的"π"滤波电路,电感选择建议: 10 至 22uH 2.8A;
- 2. 在设计功放最大功率输出时,建议预留空间,失真度通过输入电阻与反馈电阻进行调节,在满足音量需求的情况下,将失真度设定在1%即可;
- 3. 模拟地与数字地采用 0R 电阻或者磁珠隔离,需要注意电阻与磁珠的封装选择,需要能过足够大的电流。 功放输出接 LC 滤波器后再接喇叭; (详见 9.4) 电感功率要求选择好,比如,功放输出做到了 4R28W,那 么电感的选择为 33uH 2.8A。

十三、丝印说明



为唯创知音品牌,不会随意变更。

为主型号 不会随意变更。 为芯片版本 随版本升级而变化



十四、封装尺寸

Symbol	Dimensions I	n Millimeters	Dimension	s In Inches
Symbol	Min.	Max.	Min.	Max.
Α	1.300	1.700	0.051	0.067
A1	0.000	0.100	0.000	0.004
A2	1.350	1.550	0.053	0.061
b	0.330	0.510	0.013	0.020
С	0.170	0.250	0.007	0.010
D	4.700	5.100	0.185	0.201
D1	3.202	3.402	0.126	0.134
Е	3.800	4.000	0.150	0.157
E1	5.800	6.200	0.228	0.244
E2	2.313	2.513	0.091	0.099
е	e 1.270(BSC)		0.050((BSC)
L	0.400	1.270	0.016	0.050
θ	0°	8°	0°	8°

十五、包装信息

深圳唯创知音电子有限公司(原名;广州唯创电子有限公司)——于 1999 年创立于广州市天河区,为一专注于语音技术研究、语音产品方案设计及控制等软、硬件设计的高新技术公司。业务范围涉及电话录音汽车电子、多媒体、家居防盗、通信、家电、医疗器械、工业自动化控制、玩具及互动消费类产品等领域。团队有着卓越的 IC 软、硬件开发能力和设计经验,秉持着「积极创新、勇于开拓、满足顾客、团队合作」的理念,为力争打造"语音业界"的领导品牌。

我公司是一家杰出的语音芯片厂家,从事语音芯片研究及外围电路开发;同时为有特别需求的客户制订语音产品开发方案,并且落实执行该方案,完成产品的研发、测试,声音处理,直至产品的实际应用指导等一系列服务。经过多年的发展,公司形成了一个完善的新品流程体系,能快速研发出新品以及完善产品。语音芯片系列包含:WT2605、WT2003、WT5001、WT588D、WTH、WTV、WTN等,每一款语音芯片我们都追求精益求精、精雕细琢不断开发和完善,以求更佳的品质、更好的体现语音 IC 的实用价值。产品、模块、编辑软件等的人性化设计,使得客户的使用更方便。于 2 0 0 6 年成立的北京唯创虹泰分公司主要以销售完整的方案及成熟产品为宗旨,以便于为国内北方客户提供更好的服务。

不仅如此,还推出的多种语音模块,如 WT2605 录音模块,通过外围电路的扩展,更贴近广大用户的需求。

我们也是 MP3 芯片研发生产厂家。随着公司的外围技术扩展,在 2004 年开始生产 MP3 芯片,以及 提供 MP3 方案。在同行里面有相当高的知名度,到现在(2014-4)为止更新换代一起出了 8 种 MP3 解 决方案,并且得到市场的广泛认可。其中的 WT2605、WT2003 等芯片以音质表现极其优秀不断被客户 所接受并使用。

在语音提示器方面,我们也从事于语音提示器生产厂家:经过多年的技术储备,开始向语音提示器 领域拓展,并且得到了可喜的成果,成为语音提示器生产厂家里的一员。根据探头的类别:有超声波语音提示器,红外人体感应语音提示器,光感应语音提示器。同时也针对不同的领域开发了:自助银行语音提示器,欢迎光临迎宾器,语音广告机,语音门铃等等产品。可以肯定将来会有更多的新产品上市,来满足广大的用户的需求。让我们的生活更加智能化,人性化。

总公司名称:深圳唯创知音电子有限公司

电话: 0755-29605099 0755-29606621 0755-29606993 传真: 0755-29606626

全国统一服务热线: 4008-122-919

地址:广东省深圳市宝安区福永镇福安机器人产业园 6 栋 2-3 楼

分公司名称:广州唯创电子有限公司

电话: 020-85638557

E-mail: 864873804@qq.com 网址: www.w1999c.com

地址:广州市花都区天贵路 62 号 TGO 天贵科创 D座 409 室

分公司名称:北京唯创虹泰科技有限公司

电话: 010-89756745 传真: 010-89750195

地址:北京昌平区立汤路 186 号龙德紫金 3 号楼 902 室